Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38096743

RESUMO

Omeprazole (OME) is a widely used gastric proton pump inhibitor, marketed as a racemic mixture comprising (S)- and (R)-enantiomers, with distinct pharmacokinetic profiles. OME is primarily metabolized by the cytochrome P450 enzymes 2C19 (CYP2C19) and 3A4 (CYP3A4). OME is a conventional probe for CYP2C19 phenotyping. Accurate measurement of these enantiomers and their metabolites is essential for pharmacokinetic studies. This article presents a sensitive and accurate two-dimensional liquid chromatography-mass spectrometry (LC-MS/MS) method for the simultaneous quantification of OME enantiomers and its hydroxylated metabolite (5-hydroxyomeprazole) in human plasma. The method involves an online extraction using an achiral Discovery HS C18 trapping column for purification (20 × 2.1 mm ID, 5µm particle size, Supelco) and subsequent forward flush elution onto a chlorinated phenylcarbamate cellulose-based chiral column (150x2mm ID, 3 µm particle size, Lux Cellulose-4, Phenomenex). The assay was fully validated and met international validation criteria for accuracy, precision, and stability and ensured high selectivity and sensitivity within a short runtime (<8 min). Application of this method to clinical samples demonstrated its utility in studying OME enantiomer pharmacokinetics, particularly its potential for phenotyping the activity of the CYP2C19 isoenzyme. This robust analytical approach offers a valuable tool for clinicians and researchers studying OME's pharmacokinetics, providing insights into its metabolism and potential implications for personalized medicine.


Assuntos
2-Piridinilmetilsulfinilbenzimidazóis , Hidrocarboneto de Aril Hidroxilases , Omeprazol , Humanos , Cromatografia Líquida , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2C19 , Espectrometria de Massas em Tandem , Celulose
2.
Clin Oral Investig ; 27(8): 4715-4726, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270723

RESUMO

OBJECTIVES: Metallic particles are detected in different sites of the oral cavity, mainly in patients with peri-implantitis lesions. The aim of this pilot study was to analyze the levels of titanium and zirconium elements in the oral mucosa around healthy implants and to investigate the impact of titanium exogenous contamination on the measurements. MATERIALS AND METHODS: Forty-one participants were included in this three-phase study. Two groups of subjects were defined according to presence of titanium or zirconia implants (n: 20) or without any implants nor metallic restorations (n:21). Thirteen patients (n: 5 with zirconia implant; n: 3 with titanium implants; n: 5 control group) took part to the first part designed to optimize and validate the method of detecting titanium (Ti) and zirconium (Zr) elements in the oral mucosa and gingival tissues by the Inductively Coupled Plasma Mass Spectrometry (ICPMS). The second phase compared the levels of Ti and Zr concentrations in patients with implants (n: 12) and without implants (n: 6) who were controlled for their intake of titanium dioxide (TiO2). The last step included ten control subjects without any metallic devices to measure the concentration of Ti and Zr before and after having candies containing TiO2. RESULTS: In the first phase, concentrations of Ti and Zr were below the limit of detection (LOD) in most cases, 0.18 µg/L and 0.07 µg/L respectively. In the titanium group, two out of three subjects displayed concentrations above the LOD, 0.21 µg/L and 0.66 µg/L. Zr element was only found in patients with zirconia implants. After controlling the intake of TiO2, all concentrations of Ti and Zr were below the limit of quantification (LOQ). Moreover, in patients with no implants, the Ti concentration in gingiva cells was superior for 75% of the samples after having a TiO2 diet. CONCLUSIONS: Zirconium was only found in patients with zirconia implants, whereas titanium was detected in all groups even in subjects with no titanium implants. Zirconium and titanium elements were not detected in patients who were controlled for their intake of food and their use of toothpaste irrespective of the presence of implants or not. For 70% of the patients, the titanium detection was directly influenced by the intake of TiO2 contained candies. CLINICAL RELEVANCE: When analyzing titanium particles, it is necessary to pay attention to the risk of contamination bias brought by external products. When this parameter was controlled, no titanium particles were detected around clinically healthy implants.


Assuntos
Implantes Dentários , Mucosa Bucal , Humanos , Mucosa Bucal/patologia , Implantes Dentários/efeitos adversos , Zircônio , Projetos Piloto
3.
Artigo em Inglês | MEDLINE | ID: mdl-37004488

RESUMO

Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Tuberculose , Humanos , Animais , Toxoplasma/genética , Toxoplasmose/tratamento farmacológico , Coenzima A
4.
J Photochem Photobiol B ; 233: 112484, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671620

RESUMO

5-ALA-mediated photodynamic therapy (PDT) has been developed around the heme biosynthesis physiological pathway. It is based on the external supplementation of 5 aminolevulinic acid (5-ALA), increasing the activity of the heme pathway and leading to a significant protoporphyrin IX (PpIX) accumulation. Interestingly, this metbolite accumulation is predominant in cancer cells, induced by a highly active metabolism, therefore limiting off-target side effects and increasing therapy specificity. Nevertheless, the intrinsic mechanism responsible of PpIX accumulation on cells following PDT is still unknown, limiting clinical therapy translation. In order to further understand the mechanisms behind 5-ALA-induced PDT, in this study we aimed to evaluate the proteome changes reported on the physiological heme pathway, in response to an external 5-ALA supplementation. We studied two different scenarios following 5-ALA treatment, 5-ALA accumulation (5-ALA metabolization into the heme pathway blocked with inhibitors) and accumulation of PpIX (normal heme pathway with 5-ALA supplementation). Therefore, we were able to characterize enzymatic changes and to describe bottlenecks in the pathway. Following mass spectrometry analysis, we reported significant differences between 5-ALA and PpIX effects on heme biosynthesis and regulation of degradation. 5-ALA accumulation significantly decreased porphobilinogen deaminase (HMBS) expression, while phorphyrins accumulation (PpIX) upregulated heme synthesis, specifically HMBS and uroporphyrinogen decarboxylase (UROD), and enhanced the enzymatic level of the heme degradation pathway, including Heme oxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA). Interestingly, porphyrins induced a significant downregulation effect on oxygen-dependent coproporphyrinogen-III oxidase (CPOX). In conclusion, in this study we demonstrated that porphyrins play the most relevant role in heme biosynthesis modulation, while 5-ALA alone (PDT substrate) is not responsible of the main changes observed in this pathway during PDT treatment. Understanding heme enzyme modulation would help to design a more rational approach for patient treatment in the clinic. AIM: Effect of 5-ALA and porphyrins on the different Heme biosynthesis and degradation enzymes.


Assuntos
Ácido Aminolevulínico , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Linhagem Celular Tumoral , Heme/metabolismo , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Proteômica , Protoporfirinas/metabolismo , Protoporfirinas/farmacologia
5.
Nat Commun ; 13(1): 345, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039477

RESUMO

Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.


Assuntos
Ácido Pantotênico/biossíntese , Parasitos/patogenicidade , Infecção Persistente/parasitologia , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Animais , Vias Biossintéticas , Diferenciação Celular , Membrana Celular/metabolismo , Coenzima A/biossíntese , Coenzima A/química , Coenzima A/metabolismo , Citoplasma/metabolismo , Feminino , Estágios do Ciclo de Vida , Camundongos , Ácido Pantotênico/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Multimerização Proteica , Toxoplasma/crescimento & desenvolvimento
6.
Metabolites ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436417

RESUMO

Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii-previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite's metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.

7.
Cell Host Microbe ; 27(2): 290-306.e11, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31991093

RESUMO

To survive and proliferate in diverse host environments with varying nutrient availability, the obligate intracellular parasite Toxoplasma gondii reprograms its metabolism. We have generated and curated a genome-scale metabolic model (iTgo) for the fast-replicating tachyzoite stage, harmonized with experimentally observed phenotypes. To validate the importance of four metabolic pathways predicted by the model, we have performed in-depth in vitro and in vivo phenotyping of mutant parasites including targeted metabolomics and CRISPR-Cas9 fitness screening of all known metabolic genes. This led to unexpected insights into the remarkable flexibility of the parasite, addressing the dependency on biosynthesis or salvage of fatty acids (FAs), purine nucleotides (AMP and GMP), a vitamin (pyridoxal-5P), and a cofactor (heme) in both the acute and latent stages of infection. Taken together, our experimentally validated metabolic network leads to a deeper understanding of the parasite's biology, opening avenues for the development of therapeutic intervention against apicomplexans.


Assuntos
Ácidos Graxos/metabolismo , Heme/metabolismo , Toxoplasma/metabolismo , Vitamina B 6/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional , Desenvolvimento de Medicamentos/tendências , Genômica , Estágios do Ciclo de Vida/fisiologia , Redes e Vias Metabólicas , Metabolômica , Camundongos , Fenótipo , Toxoplasma/genética
8.
Anal Bioanal Chem ; 410(7): 1873-1884, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29411086

RESUMO

High-quality mass spectral libraries have become crucial in mass spectrometry-based metabolomics. Here, we investigate a workflow to generate accurate mass discrete and composite spectral libraries for metabolite identification and for SWATH mass spectrometry data processing. Discrete collision energy (5-100 eV) accurate mass spectra were collected for 532 metabolites from the human metabolome database (HMDB) by flow injection analysis and compiled into composite spectra over a large collision energy range (e.g., 10-70 eV). Full scan response factors were also calculated. Software tools based on accurate mass and predictive fragmentation were specially developed and found to be essential for construction and quality control of the spectral library. First, elemental compositions constrained by the elemental composition of the precursor ion were calculated for all fragments. Secondly, all possible fragments were generated from the compound structure and were filtered based on their elemental compositions. From the discrete spectra, it was possible to analyze the specific fragment form at each collision energy and it was found that a relatively large collision energy range (10-70 eV) gives informative MS/MS spectra for library searches. From the composite spectra, it was possible to characterize specific neutral losses as radical losses using in silico fragmentation. Radical losses (generating radical cations) were found to be more prominent than expected. From 532 metabolites, 489 provided a signal in positive mode [M+H]+ and 483 in negative mode [M-H]-. MS/MS spectra were obtained for 399 compounds in positive mode and for 462 in negative mode; 329 metabolites generated suitable spectra in both modes. Using the spectral library, LC retention time, response factors to analyze data-independent LC-SWATH-MS data allowed the identification of 39 (positive mode) and 72 (negative mode) metabolites in a plasma pool sample (total 92 metabolites) where 81 previously were reported in HMDB to be found in plasma. Graphical abstract Library generation workflow for LC-SWATH MS, using collision energy spread, accurate mass, and fragment annotation.


Assuntos
Cromatografia Líquida/métodos , Metaboloma , Metabolômica/métodos , Plasma/metabolismo , Espectrometria de Massas em Tandem/métodos , Bases de Dados Factuais , Análise de Injeção de Fluxo/métodos , Humanos , Plasma/química , Software
9.
Artigo em Inglês | MEDLINE | ID: mdl-28780068

RESUMO

The application of predicted LC retention time to support metabolite identification was evaluated for a metabolomics MS/MS database containing 532 compounds representative for the major human metabolite classes. LC retention times could be measured for two C18 type columns using a mobile phase of pH=3.0 for positive ESI mode (n=337, 228) and pH=8.0 for negative ESI mode (n=410, 233). A QSRR modelling was applied with a small set of model compound selected based on the Kennard-Stone algorithm. The models were implemented in the R environment and can be applied to any library. The prediction model was built with two molecular descriptors, LogD2 and the molecular volume. A limited set of model compounds (LC CalMix, n=16) could be validated on two different C18 reversed phase LC columns and with comparable prediction accuracy. The CalMix can be used to compensate for different LC systems. In addition, LC retention prediction was found, in combination with SWATH-MS, to be attractive to eliminate false positive identification as well as for ranking purpose different metabolite isomeric forms.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Modelos Estatísticos , Algoritmos , Metabolômica
10.
Methods Mol Biol ; 1618: 137-147, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523505

RESUMO

Hair testing is a powerful tool routinely used for the detection of drugs of abuse. The analysis of hair is highly advantageous as it can provide prolonged drug detectability versus that in biological fluids and chronological information about drug intake based on the average growth of hair. However, current methodology requires large amounts of hair samples and involves complex time-consuming sample preparation followed by gas or liquid chromatography coupled with mass spectrometry. Mass spectrometry imaging is increasingly being used for the analysis of single hair samples, as it provides more accurate and visual chronological information in single hair samples.Here, two methods for the preparation of single hair samples for mass spectrometry imaging are presented.The first uses an in-house built cutting apparatus to prepare longitudinal sections, the second is a method for embedding and cryo-sectioning hair samples in order to prepare cross-sections all along the hair sample.


Assuntos
Cabelo/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Detecção do Abuso de Substâncias/métodos , Cocaína/análise , Cocaína/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Manejo de Espécimes , Espectrometria de Massas em Tandem
11.
Rapid Commun Mass Spectrom ; 31(9): 753-761, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28199054

RESUMO

RATIONALE: In peptide quantification by liquid chromatography/mass spectrometry (LC/MS), the optimization of multiple reaction monitoring (MRM) parameters is essential for sensitive detection. We have compared different approaches to build MRM assays, based either on flow injection analysis (FIA) of isotopically labelled peptides, or on the knowledge and the prediction of the best settings for MRM transitions and collision energies (CE). In this context, we introduce MRMOptimizer, an open-source software tool that processes spectra and assists the user in selecting transitions in the FIA workflow. METHODS: MS/MS spectral libraries with CE voltages from 10 to 70 V are automatically acquired in FIA mode for isotopically labelled peptides. Then MRMOptimizer determines the optimal MRM settings for each peptide. To assess the quantitative performance of our approach, 155 peptides, representing 84 proteins, were analysed by LC/MRM-MS and the peak areas were compared between: (A) the MRMOptimizer-based workflow, (B1) the SRMAtlas transitions set used 'as-is'; (B2) the same SRMAtlas set with CE parameters optimized by Skyline. RESULTS: 51% of the three most intense transitions per peptide were shown to be common to both A and B1/B2 methods, and displayed similar sensitivity and peak area distributions. The peak areas obtained with MRMOptimizer for transitions sharing either the precursor ion charge state or the fragment ions with the SRMAtlas set at unique transitions were increased 1.8- to 2.3-fold. The gain in sensitivity using MRMOptimizer for transitions with different precursor ion charge state and fragment ions (8% of the total), reaches a ~ 11-fold increase. CONCLUSIONS: Isotopically labelled peptides can be used to optimize MRM transitions more efficiently in FIA than by searching databases. The MRMOptimizer software is MS independent and enables the post-acquisition selection of MRM parameters. Coefficients of variation for optimal CE values are lower than those obtained with the SRMAtlas approach (B2) and one additional peptide was detected. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida/métodos , Fragmentos de Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Células Cultivadas , Bases de Dados Factuais , Células Dendríticas/química , Humanos , Íons/análise , Íons/química , Modelos Lineares , Fragmentos de Peptídeos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tripsina
12.
Mass Spectrom Rev ; 35(3): 361-438, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25252132

RESUMO

Dried blood spots (DBS) typically consist in the deposition of small volumes of capillary blood onto dedicated paper cards. Comparatively to whole blood or plasma samples, their benefits rely in the fact that sample collection is easier and that logistic aspects related to sample storage and shipment can be relatively limited, respectively, without the need of a refrigerator or dry ice. Originally, this approach has been developed in the sixties to support the analysis of phenylalanine for the detection of phenylketonuria in newborns using bacterial inhibition test. In the nineties tandem mass spectrometry was established as the detection technique for phenylalanine and tyrosine. DBS became rapidly recognized for their clinical value: they were widely implemented in pediatric settings with mass spectrometric detection, and were closely associated to the debut of newborn screening (NBS) programs, as a part of public health policies. Since then, sample collection on paper cards has been explored with various analytical techniques in other areas more or less successfully regarding large-scale applications. Moreover, in the last 5 years a regain of interest for DBS was observed and originated from the bioanalytical community to support drug development (e.g., PK studies) or therapeutic drug monitoring mainly. Those recent applications were essentially driven by improved sensitivity of triple quadrupole mass spectrometers. This review presents an overall view of all instrumental and methodological developments for DBS analysis with mass spectrometric detection, with and without separation techniques. A general introduction to DBS will describe their advantages and historical aspects of their emergence. A second section will focus on blood collection, with a strong emphasis on specific parameters that can impact quantitative analysis, including chromatographic effects, hematocrit effects, blood effects, and analyte stability. A third part of the review is dedicated to sample preparation and will consider off-line and on-line extractions; in particular, instrumental designs that have been developed so far for DBS extraction will be detailed. Flow injection analysis and applications will be discussed in section IV. The application of surface analysis mass spectrometry (DESI, paper spray, DART, APTDCI, MALDI, LDTD-APCI, and ICP) to DBS is described in section V, while applications based on separation techniques (e.g., liquid or gas chromatography) are presented in section VI. To conclude this review, the current status of DBS analysis is summarized, and future perspectives are provided.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Espectrometria de Massas/métodos , Triagem Neonatal/métodos , Aminoácidos/sangue , Coleta de Amostras Sanguíneas/métodos , Cromatografia Líquida/métodos , Teste em Amostras de Sangue Seco/instrumentação , Análise de Injeção de Fluxo/métodos , Humanos , Recém-Nascido
13.
J Proteome Res ; 14(11): 4581-93, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26412574

RESUMO

Data-independent acquisition LC-MS/MS techniques complement supervised methods for peptide quantification. However, due to the wide precursor isolation windows, these techniques are prone to interference at the fragment ion level, which, in turn, is detrimental for accurate quantification. The nonoutlier fragment ion (NOFI) ranking algorithm has been developed to assign low priority to fragment ions affected by interference. By using the optimal subset of high-priority fragment ions, these interfered fragment ions are effectively excluded from quantification. NOFI represents each fragment ion as a vector of four dimensions related to chromatographic and MS fragmentation attributes and applies multivariate outlier detection techniques. Benchmarking conducted on a well-defined quantitative data set (i.e., the SWATH Gold Standard) indicates that NOFI on average is able to accurately quantify 11-25% more peptides than the commonly used Top-N library intensity ranking method. The sum of the area of the Top3-5 NOFIs produces similar coefficients of variation as compared to that with the library intensity method but with more accurate quantification results. On a biologically relevant human dendritic cell digest data set, NOFI properly assigns low-priority ranks to 85% of annotated interferences, resulting in sensitivity values between 0.92 and 0.80, against 0.76 for the Spectronaut interference detection algorithm.


Assuntos
Algoritmos , Cromatografia Líquida/métodos , Fragmentos de Peptídeos/análise , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Benchmarking , Células Dendríticas/química , Células HeLa , Humanos , Íons , Dados de Sequência Molecular , Cultura Primária de Células , Proteólise , Proteoma/química
14.
J Proteome Res ; 14(10): 4359-71, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26302369

RESUMO

As tryptic peptides and metabolites are not equally distributed along the mass range, the probability of cross fragment ion interference is higher in certain windows when fixed Q1 SWATH windows are applied. We evaluated the benefits of utilizing variable Q1 SWATH windows with regards to selectivity improvement. Variable windows based on equalizing the distribution of either the precursor ion population (PIP) or the total ion current (TIC) within each window were generated by an in-house software, swathTUNER. These two variable Q1 SWATH window strategies outperformed, with respect to quantification and identification, the basic approach using a fixed window width (FIX) for proteomic profiling of human monocyte-derived dendritic cells (MDDCs). Thus, 13.8 and 8.4% additional peptide precursors, which resulted in 13.1 and 10.0% more proteins, were confidently identified by SWATH using the strategy PIP and TIC, respectively, in the MDDC proteomic sample. On the basis of the spectral library purity score, some improvement warranted by variable Q1 windows was also observed, albeit to a lesser extent, in the metabolomic profiling of human urine. We show that the novel concept of "scheduled SWATH" proposed here, which incorporates (i) variable isolation windows and (ii) precursor retention time segmentation further improves both peptide and metabolite identifications.


Assuntos
Células Dendríticas/química , Peptídeos/urina , Proteoma/isolamento & purificação , Proteômica/métodos , Software , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Cromatografia de Fase Reversa , Humanos , Dados de Sequência Molecular , Cultura Primária de Células , Proteólise , Proteômica/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Tripsina/química
15.
Anal Biochem ; 484: 122-32, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26036199

RESUMO

In the frame of protein identification from mouse adipose tissue, two strategies were compared for the offline elution of peptides from a strong cation exchange (SCX) column in two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) analyses. First, the salt gradient (using K(+) as displacing agent) was evaluated from 25 to 500mM KCl. Then, a less investigated elution mode using a pH gradient (using citric acid and ammonium hydroxide) was carried out from pH 2.5 to 9.0. Equal amounts of peptide digest derived from mouse adipose tissue were loaded onto the SCX column and fractionated according to the two approaches. A total of 15 fractions were collected in two independent experiments for each SCX elution strategy. Then, each fraction was analyzed on a nanoLC-MS/MS platform equipped with a column-switching unit for desalting and enrichment. No substantial differences in peptide quality characteristics (molecular weight, isoelectric point, or GRAVY [grand average of hydropathicity] index distributions) were observed between the two datasets. The pH gradient approach was found to be superior, with 27.5% more unique peptide identifications and 10% more distinct protein identifications compared with the salt-based elution method. In conclusion, our data imply that the pH gradient SCX fractionation is more desirable for proteomics analysis of entire adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Masculino , Camundongos
16.
Anal Biochem ; 484: 40-50, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25983236

RESUMO

Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry (MS)-based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize MS coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilization and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA (radioimmunoprecipitation assay) buffer, was shown to be the method of choice based on total protein extraction and on the solubilization and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than that by 10% trichloroacetic acid (TCA)/acetone, allowing in excess of 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate into the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6 to 11% more distinct peptides and 14 to 19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone, with the greatest increase (34%) for hydrophobic proteins.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Células Dendríticas/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Acetona/química , Soluções Tampão , Precipitação Química , Células Dendríticas/citologia , Humanos , Monócitos/citologia , Octoxinol/química , Desnaturação Proteica , Transporte Proteico , Ensaio de Radioimunoprecipitação , Solubilidade , Ácido Tricloroacético/química
17.
J Pharm Biomed Anal ; 102: 290-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459926

RESUMO

In the present work we investigate the integration of a single hardware platform (Prospekt-2) allowing on-line SPE with pre-/post-trapping dilution and direct injection of plasma extracts, and also compare the benefits and challenges of the different approaches for pharmaceutical drugs with heterogeneous physicochemical properties. In the first part, the generic use of on-line SPE with direct plasma injection or after protein precipitation was investigated for the quantitative analysis of talinolol. In the second part, pre-trapping and post-trapping dilution for on-line SPE is discussed for generic method development on an oxadiazole and its major metabolite. Finally, the difference of performance between direct plasma injection vs. off-line liquid-liquid extraction is also described for the quantification of buprenorphine and naltrexone down to 50 and 100 pg/ml using a 0.25 ml plasma aliquot. All assays were in human plasma and detection was performed by mass spectrometry detection either on simple or triple stage quadrupoles. Regardless of the tested strategy, assays were found linear, with precision and accuracy with <15% for all quality controls samples and <20% for lower limit of quantitation.


Assuntos
Cromatografia Líquida/métodos , Preparações Farmacêuticas/sangue , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Buprenorfina/sangue , Humanos , Extração Líquido-Líquido , Naloxona/sangue , Propanolaminas/sangue
18.
Proteomics ; 15(5-6): 964-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25430050

RESUMO

Data-independent acquisition (DIA) offers several advantages over data-dependent acquisition (DDA) schemes for characterizing complex protein digests analyzed by LC-MS/MS. In contrast to the sequential detection, selection, and analysis of individual ions during DDA, DIA systematically parallelizes the fragmentation of all detectable ions within a wide m/z range regardless of intensity, thereby providing broader dynamic range of detected signals, improved reproducibility for identification, better sensitivity, and accuracy for quantification, and, potentially, enhanced proteome coverage. To fully exploit these advantages, composite or multiplexed fragment ion spectra generated by DIA require more elaborate processing algorithms compared to DDA. This review examines different DIA schemes and, in particular, discusses the concepts applied to and related to data processing. Available software implementations for identification and quantification are presented as comprehensively as possible and examples of software usage are cited. Processing workflows, including complete proprietary frameworks or combinations of modules from different open source data processing packages are described and compared in terms of software availability and usability, programming language, operating system support, input/output data formats, as well as the main principles employed in the algorithms used for identification and quantification. This comparative study concludes with further discussion of current limitations and expectable improvements in the short- and midterm future.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Software , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Plant Physiol ; 167(1): 89-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25406120

RESUMO

The esterification of methylecgonine (2-carbomethoxy-3ß-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots.


Assuntos
Aciltransferases/metabolismo , Cocaína/biossíntese , Proteínas de Plantas/metabolismo , Catálise , Cocaína/análogos & derivados , Cocaína/análise , Erythroxylaceae/enzimologia , Erythroxylaceae/metabolismo , Células do Mesofilo/enzimologia , Células do Mesofilo/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/química
20.
Anal Bioanal Chem ; 407(8): 2177-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25486918

RESUMO

Quantification by mass spectrometry imaging (Q-MSI) is one of the hottest topics of the current discussions among the experts of the MS imaging community. If MSI is established as a powerful qualitative tool in drug and biomarker discovery, its reliability for absolute and accurate quantification (QUAN) is still controversial. Indeed, Q-MSI has to deal with several fundamental aspects that are difficult to control, and to account for absolute quantification. The first objective of this manuscript is to review the state-of-the-art of Q-MSI and the current strategies developed for absolute quantification by direct surface sampling from tissue sections. This includes comments on the quest for the perfect matrix-matched standards and signal normalization approaches. Furthermore, this work investigates quantification at a pixel level to determine how many pixels must be considered for accurate quantification by ultraviolet matrix-assisted laser desorption/ionization (MALDI), the most widely used technique for MSI. Particularly, this study focuses on the MALDI-selected reaction monitoring (SRM) in rastering mode, previously demonstrated as a quantitative and robust approach for small analyte and peptide-targeted analyses. The importance of designing experiments of good quality and the use of a labeled compound for signal normalization is emphasized to minimize the signal variability. This is exemplified by measuring the signal for cocaine and a tryptic peptide (i.e., obtained after digestion of a monoclonal antibody) upon different experimental conditions, such as sample stage velocity, laser power and frequency, or distance between two raster lines. Our findings show that accurate quantification cannot be performed on a single pixel but requires averaging of at least 4-5 pixels. The present work demonstrates that MALDI-SRM/MSI is quantitative with precision better than 10-15 %, which meets the requirements of most guidelines (i.e., in bioanalysis or toxicology) for quantification of drugs or peptides from tissue homogenates.


Assuntos
Cocaína/química , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Diagnóstico por Imagem , Camundongos , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...